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Abstract
A generalized Cauchy dispersion formula applicable to both normal and
anomalous dispersion in the refractive index of transparent materials is derived
from the Kramers–Kronig relations. Several commonly used dispersion
formulae are closely related to this result. The expansion coefficients,
heretofore considered empirical, are simply the odd moments of the absorption
spectrum. These ideas are illustrated for natural diamond, and high-purity
silicon and germanium. Analysis of published data for these materials discloses
extrinsic dispersive effects in the far infrared, even for ‘high-purity’ samples.
We attribute this dispersion to free-carrier or defect-induced absorptions at
energies below the range of measurements.

1. Introduction

Solid-state spectroscopies commonly involve measurement of either the absorptive or
dispersive response of a material to an external probe [1]. In many instances, response
theory provides simple sum-rule limitations on, and connections between, various measures
of response [1–3]. Moreover, these limitations and connections are often independent of the
details of the model used to describe the material and its interaction with the probe. Here
we consider an instance of this involving Cauchy’s 1830 elastic-ether theory of the refractive
index [4, 5]. The present ideas developed during an extension [6] of self-consistent optical
dispersion analysis [7] to semiconductors, but are also relevant to insulators.

A number of recent discussions [8, 9] of the refractive index, n(ω), of the semiconducting
group IV elements have relied on fitting experimental data with Sellmeier [10] or
Herzberger [11] dispersion formulae. The first of these has the form

n(ω)2 = 1 +
∑
i

aiλ
2

λ2 − λ2
i

(1)

with empirical parameters ai and λi correspond to the strengths and resonant wavelengths of
a model solid consisting of frictionless Lorentz oscillators [12]. This formula was originally
derived by Sellmeier in 1871 [10] as an extension of Cauchy’s theory of optical dispersion [4, 5]
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to include the possibility of anomalous dispersion. Although this work was based on the ether
theory, Maxwell’s theory combined with Lorentz’s model of the electronic response of matter
leads to the same result [12].

The Herzberger dispersion formula [11],

n(ω) = a + bλ2 +
c

λ2 − λ2
0

+
d

(λ2 − λ2
0)

2
(2)

may be viewed as an approximation to Sellmeier’s result with a limited number of adjustable
parameters, a, b, c, d , and λ0 that was developed specifically for optical glasses in the visible
and near infrared. These formulae, particularly Herzberger’s, provide excellent practical
interpolations for measured indices provided the wavelength regions near λi are avoided;
however, the parameters involved are not directly related to fundamental properties of the
material and have only a qualitative physical interpretation.

Here we demonstrate that Cauchy’s original dispersion formula,

n(ω) = n0 + n2ω
2 + n4ω

4 + n4ω
6 . . . ω < ωh (3)

where h̄ω is the photon energy and h̄ωh is the lowest excitation threshold, follows directly
from the Kramers–Kronig relations [13] for linear optical response, and that it may be
generalized to include anomalous dispersion. Moreover, we show that the coefficients in
our generalized Cauchy dispersion formula for the index are simply the odd energy moments
of the material’s absorption spectrum. Since our treatment is based on the analyticity of the
complex refractive index, our generalized dispersion formula is linear in n(ω). In contrast,
the Sellmeier formula, (1), has the added complication of being quadratic in n(ω) since its
derivation depends directly on the analyticity of the dielectric response. These ideas are
illustrated for the group IV elemental semiconductors, i.e. diamond, silicon and germanium.
A by-product of our analysis is the finding that literature values of the infrared refractive index
for these materials exhibit dispersion caused by extrinsic free carriers or defects absorbing in
the sub-infrared, even for samples that were thought to be of ‘high purity’.

2. Theory

Nonmetals display a region of high transparency for photons with energies between those for
phonon or free-carrier absorption in the far infrared, and for interband electronic transition
in the visible or near ultraviolet. At low temperatures, this region of high transparency
extends to zero energy when phonon modes are infrared inactive, i.e. when dipole coupling to
lattice modes is forbidden in first order by symmetry, as in defect-free, non-polar materials.
Experimentally, the refractive index of such materials can be measured directly to high precision
using traditional optical methods [14]. A simple connection between index measurements and
other fundamental properties of the solid should therefore be valuable.

From the standpoint of linear-response theory, such a connection is provided by the
Kramers–Kronig relations for the complex refractive index, n(ω) + iκ(ω), where n(ω) is
the refractive index and κ(ω) is the extinction coefficient. Specifically, in the absence of
magnetic fields [15], the index is related to absorption at other energies by the Kramers–Kronig
relation [13]

n(ω)− 1 = 2

π
P

∫ ∞

0

ω′

ω′2 − ω2
κ(ω′) dω′. (4)

Assuming transparency in the frequency range ωl < ω < ωh, this integral may be divided into
three parts.

n(ω)− 1 = 2

π

∫ ωl

0

ω′

ω′2 − ω2
κ(ω′) dω′ + �(ω) +

2

π

∫ ∞

ωh

ω′

ω′2 − ω2
κ(ω′) dω′. (5)
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The first and third terms correspond to dispersion arising from absorptions in the spectral
regions from 0 to ωl , and from ωh to ∞, which lie below and above the region of transparency,
respectively. Note that these are not principal-value integrals since ω does not lie within the
intervals of integration. The second term, written as �(ω) to emphasize that it is small in
the present application, is the principal-value integral representing dispersion arising from the
highly transparent region:

�(ω) = 2

π
P

∫ ωh

ωl

ω′

ω′2 − ω2
κ(ω′) dω′. (6)

By assumption κ(ω) is very small for ωl < ω < ωh, so we neglect �(ω) in the following.
However, if κ(ω) were not negligible, (6) could be evaluated explicitly.

The integrands of the first and third terms on the right-hand side of (5) may be expanded
in power series, the first in the variable (ω′/ω)2, the third in the variable (ω/ω′)2. Since the
overwhelming contribution to the infrared refractive index of intrinsic semiconductors arises
from interband transitions at energies higher than h̄ωh, we first consider the third term that
accounts for contributions from absorptions aboveωh. Expanding the integrand yields a Taylor
series in ω2

2

π

∫ ∞

ωh

ω′

ω′2 − ω2
κ(ω′) dω′ = (n0 − 1) + n2ω

2 + n4ω
4 + · · · ω < ωh (7)

where

n0 = 1 +
2

π

∫ ∞

ωh

1

ω′ κ(ω
′) dω′ (8)

and

nj = 2

π

∫ ∞

ωh

1

ω′j+1
κ(ω′) dω′ j = 2, 4, 6, . . . . (9)

Provided the absorptions making significant contributions to the integrals in (9) are at
frequencies well above the region of transparency, i.e. well above ωh, the coefficients nj
should fall off rapidly with increasing j so that only a few terms will be required in the series
on the right-hand side of (7). (In the event that this condition is not satisfied, the integral can
be treated by making a partial expansion and treating the remainder as a separate integral.
See (13) below.)

Parenthetically, it should be pointed out that a similar series expansion holds [16] for the
molar refractivity of gases in terms of moments of the atomic or molecular dipole oscillator
strength. The derivation is based on a quantum-mechanical result for the polarizability and
strictly applies to the dielectric function, not the index. Additionally, local-field corrections
should be included in the case of dense systems to account for the polarizability of the gas
as a whole. The present derivation avoids these complications by explicitly treating n and κ ,
which refer to the response of the entire solid.

Similarly, contributions to the refractive index from absorptions below ωl may be written
as a series in inverse powers of ω2,

2

π

∫ ωl

0

ω′

ω′2 − ω2
κ(ω′) dω′ = n−2ω

−2 + n−4ω
−4 + · · · ωl < ω (10)

where

n−j = − 2

π

∫ ωl

0
ω′j−1κ(ω′) dω′ j = 2, 4, 6, . . . . (11)

Again, provided the region of significant absorption contributing to the integrals in (11) lies at
frequencies well below ωl , convergence of the series (10) should be rapid.
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Finally, combining (7) and (10) yields a Laurent expansion [17] for the index

n(ω) = n0 +
∞∑

j=2,4,...

n−jω−j + njω
j ωl < ω < ωh. (12)

From a mathematical standpoint, the moments expressions (8), (9) and (11) for the expansion
coefficients are specific instances of the Cauchy–Taylor theorem [17] applied to the complex
refractive index. (This theorem relates the coefficients in Taylor and Laurent series to contour
integrals in the complexω plane. Since the index falls off sufficiently rapidly [3] at infinity, just
those parts of the integrals along the real axis contribute.) Here, however, only terms in even
powers of ω appear in (12) since n(ω) is an even function of ω in the absence of a magnetic
field [15]. Terms in positive powers ofω arise from absorptions above the high-frequency limit
of the range of transparency, ωh, and their coefficients, nj , are always positive for a system in
the ground state (κ is everywhere positive). In contrast, terms in negative powers of ω arise
from absorptions below the low-frequency limit, ωl , and their coefficients, n−j , are always
negative for systems in the ground state. We note that the inverse-first-moment expression for
the static index, (8), is well known in the limit of ωh → 0 [2]. The remaining expressions for
the coefficients, (9) and (11), appear to be new.

Cauchy derived a series representation of the index in this form, but involving only
positive powers of ω, on the basis of the ether theory in 1830 [4, 5]. It has received little
attention since the development of the electronic theory of matter and the explanation of optical
properties in terms of Lorentz oscillators [12] or their quantum counterparts. However, the
present dispersion-theory approach shows that a series expansion, when generalized to include
negative-power terms, is in principle exact in regions of negligible absorption. Further, the
result is general since it depends on the causal, local and linear nature of the optical response
of an inertial system. The remaining practical question concerns the number of terms needed
to give an adequate representation of the index. To address this we consider the favourable
case of nonpolar, indirect-gap semiconductors.

3. Application to elemental semiconductors

Intrinsic elemental semiconductors such as diamond, silicon and germanium are highly
transparent for photon energies below the electronic band gap with the exception of a very weak
higher-order phonon absorption that is negligible compared with electronic effects [18–20].
(We estimated the phonon contribution to the index to be roughly 10−3 or less by approximating
the principal infrared absorption bands [21, 22, 25] with Lorenzians and calculating the
dispersion. We will neglect this contribution of higher-order phonon processes in the
following.) The index of refraction is relatively large throughout this region of transparency—
especially so for silicon and germanium—and can be measured directly and with high precision
using standard optical techniques. In light of the technological and commercial importance of
these materials, a representation of their refractive index that is simple, physically based and
appropriate to the precision of the measurements is desirable. The extent to which the first few
terms of a Cauchy expansion in positive powers of photon frequency fulfills these criteria is
illustrated in figure 1 for high-quality natural diamond [9, 21], and in figure 2 for high-purity
silicon [8, 22–24] and germanium [8, 25]. Values of the ‘Cauchy’ coefficients found by fitting
these data are given in table 1.
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Figure 1. The refractive index of natural diamond as a function of photon energy squared. Data
are taken from measurements of Edwards and Ochoa [9] and the compilation of Edwards and
Philipp [21].

Figure 2. The refractive index of high-purity silicon and germanium in the infrared as a function of
photon energy squared. The data are taken from the compilations of Li [8], Edwards [22, 23] and
Potter [25]. (In the case of silicon, several early measurements that appear to suffer from systematic
errors have not been plotted.)

3.1. Positive-power terms

Over the range of transparencies in which direct measurements are possible—two to two-and-
one-half decades in energy—figures 1 and 2 show that the refractive index is very nearly linear in
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Table 1. Cauchy expansion coefficients for the refractive index in the range of high transparency
of the of group IV semiconductors. Least-squares fits of (12) were made to compilations of direct
index measurements given in [9, 21] for diamond, [8, 22–24, 26] for silicon, and [8, 25, 26] for
germanium. For intrinsic material n−2 should be zero. The small non-zero values are believed
to reflect extrinsic absorptions at energies below the range of index measurements. The values of
n−2 for silicon and germanium given are strongly influenced by the far infrared measurements of
Randall and Rawcliffe [26], and hence are specific to the impurities in their samples.

Material Range (eV) n−2 (eV2) n0 n2 (eV−2) n4 (eV−4)

Diamond 0.050–5.47 −1.07 × 10−5 2.378 8.01 × 10−3 1.04 × 10−4

Silicon 0.002–1.08 −2.04 × 10−8 3.4189 8.15 × 10−2 1.25 × 10−2

Germanium 0.002–0.75 −1.0 × 10−8 4.003 2.2 × 10−1 1.4 × 10−1

ω2 with a slight upward curvature corresponding to a small ω4 term with a positive coefficient.
The need for only a few terms in the series reflects the gradual onset of relatively weak
intrinsic absorption at energies just above the region of transparency in these substances. This
is characteristic of nonpolar materials with an indirect-gap electronic structure [19] for which
phonon-assisted band-to-band transitions give rise to the low-energy interband excitations.
Strong direct interband transitions commonly occur only at significantly higher energies.

Fitting available direct index measurements with a polynomial including terms up to ω6

does not significantly improve the fit. The resulting values of n6 are very small and in some
instances are negative. A negative coefficient for positive powers of ω is inconsistent with
the series-expansion formalism and most likely reflects uncertainties in the published data.
(Diamond data were the least well fit, but the fit was still within the range of uncertainty found
by Vishnevskii and Malogolovets, who measured a 0.4% variation, or 0.01 uncertainty, in the
index amongst 26 samples at 580 nm [27].) We observe, however, that a negative coefficient
could arise when index data are fit over a range approaching (as for diamond here) or beyond
the onset of indirect transitions. In that event, a more appropriate procedure would be to limit
the expansion of the integrand in (9) to the first few term of the series and explicitly retain the
remainder as an integral. Thus, an expansion up to terms in ω4 yields

n(ω) = n0 + n2ω
2 + n4ω

4 +
2ω6

π

∫ ∞

ωh

κ(ω′)
ω′5(ω′2 − ω2)

dω′. (13)

For an absorption spectrum consisting of δ-functions at frequencies ωi , the integral in (13)
reduces to a sum of resonance terms somewhat similar to those in the Sellmeier and Herzberger
formulae. Moreover, the integral in (13) can take on negative values for ω above the onset
of absorptions, and in principle could yield a negative contribution varying as ω6 to a first
approximation. However, for the present materials the onset of absorption is gradual and
sufficiently weak that, to within the accuracy of index data examined, there does not appear to
be a need for terms in the sixth or higher powers of ω, especially for Si and Ge.

The advantage of the Cauchy representation for the index of nonpolar semiconductors is
its simplicity and the connection between expansion coefficients and absorption spectra. This
simplicity of n(ω)–ω2 plots for silicon and germanium has been recognized previously (see,
for example, section 10.4 of [14], and [28]); however, it is rarely exploited.

Aside from the simplicity of the representation, the coefficients found by fitting index
measurements provide an independent check on measured absorption spectra. This is useful
because the precision of index measurements in the infrared (and the visible in diamond)
exceeds that for reflectance or transmittance measurements for photon energies above the
band gap by an order of magnitude or more. Consequently, the integral expressions for n0, n2

and n4 become ‘sum rules’ involving the measured values of the intercept, slope and curvature
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of the index that can be used to distinguish between conflicting absorption measurements at
higher energies [29].

Table 2. Cauchy expansion coefficients for the refractive index of intrinsic silicon in the infrared
as calculated from a fit of (12) to direct index measurements [8, 22–24, 26], and from moments of
two proposed composite extinction coefficient spectra calculated with (8) and (9). Uncertainties
in the coefficients were estimated by fitting (12) to sets of direct index measurements alternately
including and excluding measured points lying significantly above or below the average in the
energy range above 0.8 eV.

Source n0 n2 (eV−2) n4 (eV−4)

Fit to measured n(ω) 3.419 ± 0.005 8.2 ± 0.3 × 10−2 1.3 ± 0.3 × 10−2

Shiles and Smith κ(ω) 3.39 10.1 × 10−2 0.77 × 10−2

composite [30]
Karstens et al κ(ω) 3.44 9.1 × 10−2 0.56 × 10−2

composite [6]

Table 2 illustrates this with a comparison of Cauchy index coefficients derived from the
best fit of a three-term polynomial to the measured index of crystalline silicon, with values of
the corresponding integrals calculated from proposed composite absorption spectra for intrinsic
silicon [6, 30]. For example, we find that the value of n0 predicted by the spectra proposed by
Shiles and Smith [30] is too low, indicating that this proposed absorption spectrum is shifted
toward high energies. Conversely, n0 calculated from the composite of Karstens et al [6] is too
large, suggesting a net shift of their proposed absorption spectrum too far toward low energies.

3.2. Negative-power terms

Initially, one would not expect that terms in negative powers of photon frequency would be
needed to fit the index data for group IV semiconductors. Intrinsic samples at moderate
temperatures should not display significant electronic absorption in the far infrared, and their
phonon absorption is negligibly weak. However, on the expanded scale of figures 3 and 4 a
significant departure from the near-linear dependence of the index on ω2 is apparent at low
energies. For diamond this occurs below 0.55 eV, and it is strikingly large below 0.03 eV,
for silicon. A similar sharp drop occurs in measurements of the index of germanium below
0.01 eV, but the data have more scatter. These drops are inconsistent with a Taylor-series
expansion in ω2, and indicates that at least one negative-power term is required to accurately
reproduce the measurements in all cases. We attribute this anomaly to the ‘tail’ of dispersion
associated with extrinsic absorptions at energies below the range of measurements. As we
argue below, the extrinsic absorptions in Si and Ge likely arise from free carriers. In diamond,
defects or impurity complexes are the likely culprits, since even high-quality natural diamond
is known to have impurity contents of the order of a few parts per thousand [31].

A power-series fit to this tail of the low-energy dispersion can provide insight into these
low-energy processes. The point is that in general the high-frequency asymptotic form of the
dielectric response of matter is [2, 3]

ε(ω) = n(ω)2 = 1 − ω2
p/ω

2 ω → ∞ (14)

where ω2
p is the plasma frequency squared, 4πNe2/me. Here, N is the electron density and e

and me are the electron charge and mass, respectively. Thus, even if only the high-frequency
tail of a dispersion curve is known, the plasma frequency may be estimated. By analogy,
one expects that knowledge of the tail of the dispersion associated with absorptions below ωl ,
would allow an estimate of their net plasma frequency.
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Figure 3. Refractive index of diamond below 2.1 eV [9, 21]. Deviations from the almost linear
dependence on ω2 occur below approximately 0.55 eV and are attributed to polarization associated
with ionic absorptions lying at energies below the range of measurements. This polarization is
180◦ out of phase with the polarization due to band-to-band transitions and, hence, reduces the
refractive index.

Figure 4. Refractive index of silicon in the far infrared [8, 22, 23]. A sharp decrease is apparent
below 0.03 eV in the data of Randall and Rawcliffe [26]; it is attributed to polarization of free
carriers.

In making this argument quantitative, we must recognize that the low-energy absorptions
should be viewed as taking place in the polarizable medium of the host crystal. Formally this
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may be accounted for by writing the dielectric function at the low-energy end of the region
of transparency as the superposition of the dielectric response for the high- and low-energy
absorptions

ε(ω) = n(ω)2 ≈ n2
0 −�2

p/ω
2 ωl < ω < ωH (15)

where �p is the effective plasma frequency associated with the low-energy absorptions.
Assuming that the low-energy dispersion, i.e. the second term in (15), is small compared
with n0, the index becomes

n(ω) ≈ n0 − 1

2n0
�2
p/ω

2 (16)

and we can identify the coefficient n−2 in the Laurent series as

n−2 = −�2
P

2n0
. (17)

In a single-oscillator model for the low-energy absorption, �2
p becomes 4πNq2/meff , where

N is the density of the low-frequency oscillators, q is their effective charge and meff their
effective mass. Values of the plasma frequency for the low-frequency absorption inferred
from fits of the polynomial n−2ω

−2 + n0 + n2ω
2 + n4ω

4 to refractive-index measurements are
given in table 3. In all cases, and especially for the Si and Ge samples, the plasma frequency
is small, which is consistent with low impurity content and/or high effective mass.

Table 3. The plasma frequency, �p , for extrinsic far-infrared polarization in elemental
semiconductor samples determined from the ω−2 component of the generalized Cauchy dispersion
formula as fit to measurements of the refractive index. The ratio of the atomic fraction of defects
in the sample, ϕ, to their effective mass ratio, µ, has been calculated from the plasma frequency
using the material-dependent constant given in the third column (see text for details). The probable
process responsible for the low-energy polarization has been inferred from the ϕ/µ ratio and the
reported sample purity.

Material h̄�p (eV) 4πe2/me (eV2) ϕ/µ (per atom) Process

Diamond, natural 7.1 × 10−3 243.1 2.1 × 10−7 Ionic
Silicon 3.7 × 10−4 68.90 2.0 × 10−9 Electronic
Germanium 2.8 × 10−4 60.93 1.3 × 10−9 Electronic

To estimate the density of extrinsic oscillators, we write their spacial density, N , as ϕρ,
where ρ is the atomic density of the solid and ϕ the fraction of defects or impurities per host
crystal atom. Further, we assume the oscillators’ effective charge, q, is approximately the
electronic charge, e, and we measure the effective mass in units of the electronic mass as
µ = meff /me. Then the plasma frequency can be written as

�2
p = 4πNq2

meff

=
{

4πρe2

me

}
ϕ

µ
. (18)

The term in curly brackets on the right-hand side of (18) may be evaluated from the known
crystal structure [32] and the ratio ϕ/µ then calculated from the observed values of �p.
The results are summarized in table 3. For all three group IV elements ϕ/µ is very small,
corresponding to either a small fraction of impurities or defects, or a large effective mass.

In natural diamond, nitrogen is known to be present at levels of parts per thousand.
Additionally, hydrogen, boron and many other impurities are present in smaller amounts [31].
Assuming impurity and/or lattice-defect concentrations of the order of ϕ ≈ 10−3, the observed
value of ϕ/µ ≈ 10−7 is consistent with effective mass of the order of 104me, that is, an



3892 D Y Smith et al

ionic mass. We therefore conclude that the principal contributor to the extrinsic far-infrared
dispersion in natural diamond is the polarization of either charged lattice defects or ionic
impurities. Since a variety of defects, as well as some free-carrier absorption, are expected in
natural diamond [31], the present analysis provides only modest insight into low-energy optical
processes. However, the value of �p found and the observed drop in n(ω) below ≈550 meV
are consistent with a picture of polar-lattice defects that couple the electromagnetic field to
local phonon modes or lattice phonons, which in diamond have energies from 0 to 165 meV,
with a strong density-of-states peak at 150 meV [33].

The silicon and germanium samples studied in the far infrared were reportedly of high
purity, with resistivities greater than 10 � cm [26]. From the observed relation between
resistivity and dopant levels [34], this corresponds to impurity concentrations between 1014

and 1015 cm−3. The ratio, ϕ, of impurity concentration to host-crystal atomic density [32]
is then of the order of 10−8 to 10−9. Comparing this with the ratio ϕ/µ ≈ 10−9 (table 3,
column 4) derived from fits to the index, leads to effective masses of the order of the electron
mass. Thus, we conclude that the extrinsic polarization in these Si and Ge samples arises
from electronic processes, presumably free-carrier absorption. Since the effective masses of
electrons and holes are of the same order of magnitude [35], the available data do not allow us
to distinguish the carrier type.

This conclusion is strengthened by considering the phonon modes in Si and Ge. In the
former, lattice modes extend to energies of 65 meV with a density-of-states peak at 62 meV,
whilst for the latter they extend to 38 meV with the maximum in the density of states at 36 meV.
In both index data sets considered here, index measurements extended down to ≈2 meV with
the sharp drop in index starting at ≈30 meV for silicon and ≈10 meV for germanium. There is,
however, little or no evidence of structure in the region of high phonon density of states, which
would be expected if there were a significant number of polar lattice defects which coupled
phonon modes to the photon field.

4. Summary

We have derived a generalization of Cauchy’s power-series expansion for the refractive index
of an insulator or semiconductor in its range of transparency. The expansion coefficients are
shown to be the odd moments of the absorption spectra above and below the transparent range.
The formalism is illustrated using literature values for the infrared refractive index for high-
purity silicon and germanium and for the infrared and visible index of high-quality diamond.
We find that for intrinsic material a series up to terms inω4 is sufficient to fit the measurements to
within present experimental uncertainty. However, even high-purity samples display extrinsic
effects arising from free carriers, impurities or defects in the far infrared. The contributions
of these extrinsic absorptions to the refractive index can be adequately represented by a single
term in ω−2. The coefficient of this term may be related to the average plasma frequency of
the extrinsic absorption by comparison of the index with the high-frequency response of an
oscillator embedded in a dielectric, and the concentration of extrinsic absorbers then estimated
from the plasma frequency.
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